Home
Class 12
MATHS
If x=a(θ−sinθ)andy=a(1+cosθ) then prove ...

`If x=a(θ−sinθ)andy=a(1+cosθ)` then prove that `dy/ dx ​ =−cot( θ/2 ​ )`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

x = a(θ - sinθ), y = a(1 + cosθ) Find dy/dx

If y=x sin x then prove that (1)/(y)(dy)/(dx)-(1)/(x)=cot x .

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If x=cost andy=sint , then prove that (dy)/(dx)=(1)/(sqrt3), at t=(2pi)/(3) .

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

√(1+sin θ) ( 1 - sin θ) is equal to

If y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=

(sinθ - 2sin^3θ)/(2cos^3θ - cosθ) = tanθ