Home
Class 12
MATHS
If f(1)=1 , f'(1)=2 , then find the valu...

If f(1)=1 , f'(1)=2 , then find the value of `lim_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)`
(A) 2
(B) 4
(C) 1
(D) `(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=1,f'(1)=2, then write the value of (lim)_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1)

lim_(x rarr1)(4-sqrt(15x+1))/(2-sqrt(3x+1))

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(x rarr1)((x-1)/(sqrt(x^(2)-1)+sqrt(x-1)))=

lim_ (x rarr1) ((2x-1) (sqrt (x) -1)) / (2x ^ (2) + x-3)

The value of lim_(x rarr0)(1-(1)/(2^(x)))((1)/(sqrt(tan x+4)-2))

If f(1)=1,f'(1)=2 then lim_(x rarr1)(sqrt(f(x)-1))/(sqrt(x)-1) is equal to

The value of lim_(x rarr(1)/(2))((f(x)+x-1)^(3))/((x-(1)/(2))) is

3) lim_(x rarr1)((2x)sqrt(x+1))/(2x^(2)+x+1)

lim_(x rarr1)[(sqrt(x)-1)/(x-1)+(x^(2)-1)/(x^(2)-x)]