Home
Class 12
MATHS
Prove that: int(dx)/(xsqrt(x^2-a^2))=(1)...

Prove that: `int(dx)/(xsqrt(x^2-a^2))=(1)/(a) sec^-1(x/a)+c`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|768 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos
  • INVERSE-TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise EXERCISE|111 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(xsqrt(x^2-4))dx

Prove that int 2x dx =x^2+c

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

prove int(dx)/(sqrt(x^2-a^2)) = log|x+sqrt(x^2-a^2)|+c

prove int(1)/(a^2+x^2)dx = 1/a tan^-1(x/a) +C

Evaluate: int1/(xsqrt(1+x^3))\ dx

Prove that : int_(0)^(1)x(1-x)^(n)dx=1/((n+1)(n+2))

int sec^(-1)x dx