Home
Class 10
MATHS
(sqrt(3)+1)^(4)+(sqrt(3)-1)^(4) is equal...

`(sqrt(3)+1)^(4)+(sqrt(3)-1)^(4)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that: sqrt(3)=1.732 , then (sqrt(147) -1/4sqrt(48) -sqrt(75)) is equal to:

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

lim_(x=oo)(sqrt(x^(2)+1)-3sqrt(x^(2)+1))/(4sqrt(x^(4)+1)-5sqrt(x^(4)-1)) is equal to

The sum sqrt((5)/(4)+sqrt((3)/(2)))+sqrt((5)/(4)-sqrt((3)/(2))) is equal to

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)