Home
Class 12
MATHS
Find the simplified value of- tan^-1(s...

Find the simplified value of-
`tan^-1(sqrt(1+x^2)+x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

find the simplified value of- tan^-1((sqrt(1+x^2)+1)/x)

Find the simplified value of-: tan^-1(1/(sqrt(x^2-1)))

Find the simplified value of- y=tan^-1(sqrt((1-x)/(1+x)))

find the simplified value of tan^-1(x/(sqrt(a^2-x^2))) , |x|lta

Find the simplest value of f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)),x in R-{0}

Find the value of int(tan sin^(-1)x)/(sqrt(1-x^(2)))dx

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

tan[(sqrt(1+x^(2))-1)/x] =

if x greater than equal to 0 and less than equal to 1/2 then find the value of tan[sin^(-1){(x)/(sqrt(2))+sqrt((1-x^(2))/(2))}-sin^(-1)x]