Home
Class 11
MATHS
In a ∆ABC prove that cos((A+B)/(2))=sin...

In a ∆ABC prove that ` cos((A+B)/(2))=sin(C)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a DeltaA B C prove that cos ((A+B)/2)=sin (C/2).

For any triangle ABC, prove that (a+b)/c=(cos((A-B)/2))/(sinC/2)

For any triangle ABC, prove that (a+b)/c=(cos((A-B)/2))/(sinC/2)

For any triangle ABC, prove that (b+c)cos((B+C)/2)=acos((B-C)/2)

In triangle ABC, prove that sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)le(1)/(8) and hence, prove that co sec ""(A)/(2)+co sec""(B)/(2)+co sec""(C)/(2)ge6 .

For any triangle ABC, prove that (a-b)/c=(sin((A-B)/2))/(cos(C/2))

In triangle ABC, prove that cos(A/2)+cos(B/2)+cos(C/2)=4cos(pi-A)/4cos(pi-B)/4cos(pi-C)/4

For triangle ABC, show that: sin((A+B)/(2))-cos(C)/(2)=0

In any DeltaABC , prove that : (cos^2(A/2))/a + (cos^2(B/2))/b + (cos^2(C/2))/c = s^2/(abc)

In any DeltaABC , prove that (sin B)/(sin C) = (c-a cos B)/(b-a cos C)