Home
Class 9
MATHS
If a+b=4 and a^3+ b^3=8 , then a^2-ab+b^...

If `a+b=4` and `a^3+ b^3=8` , then `a^2-ab+b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^3-b^3=416 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=416 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या है ?

If a^3-b^3=208 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या होगा ?

If (a - b) = 4 and ab = 2, then (a^3-b^3) is equal to: यदि (a - b) = 4 और ab = 2 है, तो (a^3-b^3) का मान ज्ञात करें |

If a^3-b^3=208 and a-b=4, then (a+b)^2 -ab is equal to: यदि a^3-b^3=208 तथा a-b= 4, तो (a+b)^2 -ab का मान किसके बराबर है?

If (a-b)=4 and ab = 2, then (a^(3)-b^(3)) is equal to :

If a + b = 8 and a +a^2 b+b+ab^2=128 , then the positive value of a^3+b^3 is : यदि a + b = 8 तथा a +a^2 b+b+ab^2= 128 है, तो a^3+b^3 का धनात्मक मान कितना होगा?

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?