Home
Class 10
MATHS
(1)/(sqrt(3)+sqrt(2)) is equal to...

`(1)/(sqrt(3)+sqrt(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

(1)/(sqrt(9)-sqrt(8)) is equal to: 3+2sqrt(2)(b)(1)/(3+2sqrt(2)) (c) 3-2sqrt(2)(d)(3)/(2)-sqrt(2)

(22)/(2+sqrt(3)+sqrt(5)) is equal to

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))xx(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1)) is equal to 3sqrt(2)(b)(sqrt(2))/(3) (c) (2)/(3) (d) (1)/(3)

Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) is equal to:

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)