Home
Class 10
MATHS
If sin^(4)theta-cos^(4)theta=k^(4), then...

If `sin^(4)theta-cos^(4)theta=k^(4)`, then the value of `sin^(2)theta-cos^(2)theta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

if sin theta-cos theta=0, then the value of (sin^(4)theta+cos^(4)theta)

If sin theta-cos theta=0 ,then the value of sin^(4)theta+cos^(4)theta is

If sin theta-cos theta=0 ,then the value of sin^(4)theta+cos^(4)theta is

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If sin^(4)theta-cos^(4)=k^(4), then sin^(2)theta-cos^(2)theta is __________.

If (sin theta+cos theta)/(sin theta-cos theta)=3, then find the value of sin^(4)theta-cos^(4)theta

If 5sin^(2)theta+3cos^(2)theta=4 . Find the value of sin theta and cos theta :

If sin theta+sin^(2)theta+sin^(3)theta=1 then value of cos^(6)theta-4cos^(4)theta+8cos^(2)theta is

If sin theta+cosec theta=2 then value of sin^(4)theta+cos^(4)theta ?