Home
Class 10
MATHS
if sintheta = x and sectheta = y, then t...

if `sintheta` = x and `sectheta` = y, then `tantheta` is :
(a)xy, (b)`x/y`, (c)` y/x` , (d) `2/(xy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta = x and sec theta = y , then tan theta is (a) xy (b) x/y (c) y/x (d) 1/(xy)

If x=sectheta "and " y=cosec theta +cottheta , then prove that xy+1=y-x .

If cottheta+tantheta=x and sectheta-costheta=y then (i) sintheta costheta=-x (ii) sintheta tantheta=-y (iii) (x^2y)^(2/3)-(xy^2)^(2/3)=1 (iv) (x^2y)^(1/3)+(xy^2)^(1/3)=1

If cottheta+tantheta=x and sectheta-costheta=y , prove that (x^2y)^(2/3)-(x y^2)^(2/3)=1

If xy != 0 and sqrt((xy)/(3)) = x , what is y? (1) x/y = 1/3 (2) x = 3

If sectheta+tantheta=1 , then one root of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 is (A) tantheta (B) sectheta (C) costheta (D) sintheta

If two positive integers a and b are written as a=x^(3)y^(2) and b=xy^(3);x,y are prime numbers then HCF(a,b) is (a) xy (b) xy^(2) (c) x^(3)y^(3) (d) x^(2)y^(2)

If a variable line drawn through the intersection of the lines x/3+y/4=1 and x/4+y/3=1 meets the coordinate axes at A and B, (A !=B), then the locus of the midpoint of AB is (A) 6xy = 7 (x+y) (B) 4 (x+y)^2 - 28(x+y) + 49 =0 (C) 7xy = 6(x+y) (D) 14 (x+y)^2 - 97(x+y) + 168 = 0

Find f(x, y) if f(x + 2y, 2x + y) = 2xy.

Differentiate sin(xy) + (x)/(y) = x^(2) - y