Home
Class 11
MATHS
lim(xtooo)[x-sqrt(x^(2)+x]]...

`lim_(xtooo)[x-sqrt(x^(2)+x]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The value of a is

Evaluate lim_(xtooo) x^(3){sqrt(x^(2)+sqrt(1+x^(4)))-xsqrt(2)}.

(2) lim_(xtooo)sqrt(x^(2)+4)/(x+3)

What is lim_(xtooo) (sqrt(a^(2)x^(2)ax+1)sqrt(a^(2)x^(2)+1)) equal to?

The value of lim_(xtooo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)),(agt0) is

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

lim_(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

If lim_(xtooo)x-x^(2) ln(1+1/x)=l then evaluate (25)^(l) .

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)