Home
Class 12
MATHS
int0^1 sin^-1((2x)/(1+x^2))dx...

`int_0^1 sin^-1((2x)/(1+x^2))`dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

The integral int_-a^a (sin^2x)/(1-x^2)dx,0ltalt1 , is equal to (A) int_-a^a (sin^2x)/(1+x^2)dx (B) 2int_0^a (sin^2x)/(1-x^2)dx (C) int_a^0 (sin^2x)/(1+x^2)dx (D) 0

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

int sin^-1x +x/(1-x^2)dx

Evaluate: int_0^(sqrt(3))1/(1+x^2)sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_0^(sqrt(3))1/(1+x^2)sin^(-1)((2x)/(1+x^2))dx

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx