Home
Class 10
MATHS
Prove that- (1-costheta)/(1+costheta)=...

Prove that-
`(1-costheta)/(1+costheta)=(cosectheta-cottheta)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that- (1-costheta)/(1+costheta)=(1/(cosectheta+cottheta))^2

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

(1-costheta)/(1+costheta)+(1+costheta)/(1-costheta)=

Prove that:sqrt((1+costheta)/(1-costheta))={cos e ctheta+cottheta,if0

Prove that : sqrt((1+costheta)/(1-costheta))="cosec"theta+cottheta

sqrt((1+costheta)/(1-costheta))=

(1-costheta)/(1+costheta)=((1-costheta)/(sintheta))^2=(cosectheta-cottheta)^2

Prove that sintheta/(1-costheta)=cosectheta+cot theta

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

Prove that sqrt((cosec theta+cottheta)/(cosec theta-cottheta))=(sin theta)/(1-costheta)