Home
Class 12
CHEMISTRY
If uncertainty in possition of electron...

If uncertainty in possition of electron is zero, then the uncertainty in its momentum would be ……….

A

zero

B

`h/2pi`

C

`h/4pi`

D

infinity

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

It is not possible to determine preciselt both the position and momentum (or velocity) of a small moving particle such as electron, proton etc. This is known as Heisenber uncertainty principle. The mathemactical form of this principle is : Delta x.Delta p ge (h)/(4pi) (constant) However this principle is irrevalent in case of bigger particles such as a cup, ball, car etc., that we come across in our daily life. If the uncertainty in position of the electron is zero, the uncertainty in its momentum would be

A german physicist gae a principle about the uncertainties in simultaneous measurement of position and momentum of small particles. According to that physicist. It is impossible to measure simultaneously the position and momentum of small particle with absolute accuracy or certainty. if an attempt is made to measure any one of these two quantities with higher accuracy, the other becomes less accurate. The produce of the uncertainty in position (Deltax) and uncertainty momentum (Delta p) is always constant and is equal to or greater than h//4pi , where h is Planck's constant i.e. (Deltax ) (Deltap) ge (h)/(4pi) If uncertainty in the position of an electron is zero, the uncertainty in its momentum would be

If the uncertainty in the position of an electron is zero the nucertainty in its momentum be

If uncertainty in position are velocity are equal the uncertainty in momentum will be

Uncertainty in Measurement

If uncertainty in position and momentum are equal then uncertainty in velocity is.

Werner Heisenberg considered the limits of how precisely we can measure the properties of an electron or other microscopic particle. He determined that there is a fundamental limit to how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also true. this is summed up in what we now call the Heisenberg uncertainty principal. The equation is Deltax.Delta(mv) ge (h)/(4pi) The uncertainty is the position or in the momentum of a macroscopic object like a baseball is too small to observe. However, the mass of microscopic object such as an electron is small enough for the uncertainty to be relatively large and significant. If the uncertainty in velocity and position is same, then the uncertainty in momentum will be