Home
Class 12
CHEMISTRY
At 25^@C the molar conductance at infini...

At `25^@C` the molar conductance at infinite dilution for the strong electrolytes NaOH ,NaCl and` BaCl_2`are `280xx10^-4,126xx10^-4` and `280xx10^-4Sm^2mol^-1`respectively `wedge_m^0Ba(OH)_2` in `Sm^2mol^-1` will be

A

`52.4xx10^-41`

B

`524xx10^-4`

C

`40.4xx10^-4`

D

`262xx10^-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the molar conductance at infinite dilution (\( \Lambda_m^0 \)) for barium hydroxide (\( Ba(OH)_2 \)), we can use the molar conductance values of the given strong electrolytes: \( NaOH \), \( NaCl \), and \( BaCl_2 \). ### Step-by-Step Solution: 1. **Identify the ions in \( Ba(OH)_2 \)**: - \( Ba(OH)_2 \) dissociates into \( Ba^{2+} \) and \( 2OH^{-} \) ions. - Therefore, \( \Lambda_m^0 \) for \( Ba(OH)_2 \) can be expressed as: \[ \Lambda_m^0 (Ba(OH)_2) = \Lambda_m^0 (Ba^{2+}) + 2 \Lambda_m^0 (OH^{-}) \] 2. **Use the values of \( BaCl_2 \)**: - The dissociation of \( BaCl_2 \) gives \( Ba^{2+} \) and \( 2Cl^{-} \). - Thus, the molar conductance of \( BaCl_2 \) can be used to find \( \Lambda_m^0 (Ba^{2+}) \): \[ \Lambda_m^0 (Ba^{2+}) = \Lambda_m^0 (BaCl_2) - 2 \Lambda_m^0 (Cl^{-}) \] 3. **Use the values of \( NaCl \)**: - The molar conductance of \( NaCl \) gives \( Na^{+} \) and \( Cl^{-} \). - Therefore, we can express \( \Lambda_m^0 (Cl^{-}) \) as: \[ \Lambda_m^0 (Cl^{-}) = \Lambda_m^0 (NaCl) \] 4. **Substituting the values**: - Given: - \( \Lambda_m^0 (NaCl) = 126 \times 10^{-4} \, S m^2 mol^{-1} \) - \( \Lambda_m^0 (BaCl_2) = 280 \times 10^{-4} \, S m^2 mol^{-1} \) - \( \Lambda_m^0 (NaOH) = 280 \times 10^{-4} \, S m^2 mol^{-1} \) - Substitute into the equation: \[ \Lambda_m^0 (Ba^{2+}) = 280 \times 10^{-4} - 2 \times 126 \times 10^{-4} \] \[ \Lambda_m^0 (Ba^{2+}) = 280 \times 10^{-4} - 252 \times 10^{-4} = 28 \times 10^{-4} \, S m^2 mol^{-1} \] 5. **Calculate \( \Lambda_m^0 (OH^{-}) \)**: - From \( NaOH \): \[ \Lambda_m^0 (OH^{-}) = \Lambda_m^0 (NaOH) = 280 \times 10^{-4} \, S m^2 mol^{-1} \] 6. **Final calculation for \( \Lambda_m^0 (Ba(OH)_2) \)**: - Substitute back into the equation: \[ \Lambda_m^0 (Ba(OH)_2) = 28 \times 10^{-4} + 2 \times 280 \times 10^{-4} \] \[ \Lambda_m^0 (Ba(OH)_2) = 28 \times 10^{-4} + 560 \times 10^{-4} = 588 \times 10^{-4} \, S m^2 mol^{-1} \] ### Final Answer: \[ \Lambda_m^0 (Ba(OH)_2) = 588 \times 10^{-4} \, S m^2 mol^{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

At 25^(@)C , the molar conductances at infinite dilution for the strong electrolytes NaOH, NaCl " and " BaCl_(2) " are " 248 xx 10^(-4), 126 xx 10^(-4)" and " 280 xx 10^(-4) S m^(2) mol^(-1) respectively. Lamda_(m)^(@) Ba (OH)_(2) " in " S m^(2) mol^(-1)

The molar conductance at infinite dilution for electrolytes BA and CA are 140 and 120 ohm^(-1) Cm^(2) mol^(-1) respectively. If the molar conductance at infinite dilution of BX is 198 ohm^(-1) cm^(2) mol(-1), then then at infinite dilution, the molar conductance of is:

If the molar conductivities at infinited dilution of NaCl, HCl and CH_(3)COONa are 126.4, 426.1 and 91.0 ohm^(-1) cm^(2) mol^(-1) respectively. What will be the that of acetic acid?

The molar conductivity at infinite dilution for HCl , KCl and CH_(3) ClCOOK are 4.26 xx 10^(-2) , 1.50 xx 10^(-2) and 1.13 xx 10^(-2) S m^(2) mol^(-1) respectively . Calculate the molar conductivity at infinite dilution for monochloro acetic acid (CH_(2) ClCOOH) .