Home
Class 12
MATHS
Let z=e^(xy^(2)),x=t cos t,y=t sint. Fin...

Let `z=e^(xy^(2)),x=t cos t,y=t sint`. Find `(dz)/(dt)` at `t=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

y=te^(-t)+cos t Find (dy)/(dt)

If x=2cott+cos2t,y=2sint-sin2t,"find "(dy)/(dx)"at t"=(pi)/(4)

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

x=3cost-2cos^(3)t,y=3sint-2sin^(3)t

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If x=3sin t-sin3t,y=3cos t-cos3t, find (dy)/(dx) at t=(pi)/(3)