Home
Class 11
MATHS
Number of integral values of x satisfyin...

Number of integral values of `x` satisfying function `f(x)=log(x-1)+log(3-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)ge10^(12) are alpha then

Number of integral value (s) of 'x' satisfying the equation log_(1/5)(sec(pi/3)x+5)=log_5(1/(16-x^2))+tan ((13pi)/4) is

Number of integral values of x in the domain of function f (x)= sqrt(ln(|ln|x||)) + sqrt(7|x|-(|x|)^2-10) is equal to

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

Sum of all integral values of x satisfying the inequality (3^((5/2)log(12-3x)))-(3^(log x))>32 is......

Sum of integral values of x satisfying the inequality 3^((5/2)log_3(12-3x))-3^(log_2(x))>32

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :

The function f(x)=(log(pi+x))/(log(e+x)) s is

The function f(x)=(log(pi+x))/(log(e+x)) s is