Home
Class 11
MATHS
Led a function f be defined as f(x)=[|x...

Led a function f be defined as `f(x)=[|x-1|/(x^2+1)` if `x > -1` `and x^2` if `x>=-1` Then the number of critical point(s) on the graph of this function is/are:

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of critical points of the function f(x)=|x-1||x-2| is

Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx >1 Then the number of critical points on the graph of the function is___

Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx >1 Then the number of critical points on the graph of the function is___

Let f(x)={x^(3/5),ifxlt=1and (x-2)^3,ifx >1 Then the number of critical points on the graph of the function is___

L et f(x)={{:(x^(3/5),if xlt=1),(-(x-2)^3,ifx >1):} Then the number of critical points on the graph of the function is___

A function f defined by f(x)=In(sqrt(x^(2)+1-x)) is

The number of critical points of f(x)=(|x-1|)/X^2 is

The critical points of the function f(x)=|x-1|/x^2 are

Let f(x)={:[(x^(3//5", ")ifxle1),(-(x-2)^(3)ifxgt1):},"then the number of" critical points on the graph of the function are……. .

The function f:R->[-1/2,1/2] defined as f(x)=x/(1+x^2) is