Home
Class 12
MATHS
Find : lim( n rarr oo) (2^(1/n - 1 )/ ...

Find : `lim_( n rarr oo) (2^(1/n - 1 )/ ( 2^(1/n) +1 ) )`
(a)   1   (b)   1/2   (c)   -1   (d)   0

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

find lim n rarr oo (2 ^ (n) -2) (2 ^ (n) +1) ^ (- 1)

Find lim_ (n rarr oo) 2 ^ (n-1) (10 + n) (9 + n) ^ (- 1) 2 ^ (- n)

lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) ++ (1) / (2n))

lim_ (n rarr oo) ((a-1 + b ^ ((1) / (n))) / (a)) ^ (n)

5.lim_ (n rarr oo) (2 ^ (n + 1) + 3 ^ (n + 1)) / (2 ^ (n) + 3 ^ (n)) is

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

FInd lim_(n rarr oo)(2n-1)2^(n)(2n+1)^(-1)2^(1-n)