Home
Class 12
MATHS
lim(x->0) (3x+1)/(x+3)...

`lim_(x->0) (3x+1)/(x+3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (x-1)/(3x-6)

lim_(x->0) (x^3-3x+1)/(x-1)

lim_(x->0) (x^2-3x+1)/(x-1)

Evaluate the following limits, if they exist : lim_(x to 0)(3x+1)/(x+3)

If the value of lim_(x->0)( ((3/ x)+1)/((3/x)-1))^(1/x) can be expressed in the form of e^(p/q), where p and q are relative prime then find the value of (p+q) .

lim_(x->0)(e^(2x)-1)/(3x)

Evaluate the following limit: (lim)_(x rarr0)(3x+1)/(x+3)

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x)) equals :