Home
Class 12
MATHS
If e^(-y)*y=x, then (dy)/(dx) is...

If `e^(-y)*y=x,` then `(dy)/(dx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If x^y=e^(x-y) , then (dy)/(dx) is (a) (1+x)/(1+logx) (b) (1-logx)/(1+logx) (c) not defined (d) (logx)/((1+logx)^2)

If y = e^(-x) , then (dy)/(dx) is

xy=e^(x-y) then (dy)/(dx)=

If y=e^(x) then (dy)/(dx)

If x e^(x y)-y=sin^2x then (dy)/(dx)a tx=0 is a. 0 b. 1 c. -1 d. none of these

If y=e^(x).cotx then (dy)/(dx) will be

If x y=e^((x-y)), then find (dy)/(dx)

If x y=e^((x-y)), then find (dy)/(dx)

y=e^(x) find (dy)/(dx)