Home
Class 12
MATHS
int x^2 . e^(x^3) dx = (a) e^(x^3) + C...

`int x^2 . e^(x^3) dx =`
(a) `e^(x^3) + C`
(b) `e^(x^2) + C`
(c) `1/3 e^(x^3) + C`
(d) `1/3 e^(x^2) + C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If intx^(2).e^(x^(3))dx=u.e^(x^(3))+c, then u=

Choose the correct answer int x^(2)e^(x^(3))dx equals (A) (1)/(3)e^(x^(3))+C(B)(1)/(3)e^(x^(2))+C(C)(1)/(2)e^(x^(3))+C(D)(1)/(2)e^(x^(2))+C

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

int (e ^ (3x) + e ^ (x)) / (e ^ (4x) -e ^ (2x) +1) dx

For int (x -1)/( (x +1 ) ^(3)) e ^(x) dx = e ^(x) f (x) + c , f (x) =(x +1) ^(2).

int(1)/(1+e^(x))dx= (a) log(1+e^(x)) (b) log((1+e^(x))/(e^(x))) (c) log(1+e^(-x)) (d) -log(e^(-x)+1)

int e^(x)(1-cot x+cot^(2)x)dx=e^(x)cot x+C (b) e^(x)cot x+C(c)e^(x)cos ecx+C(d)e^(x)cos ecx+C

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

y = c_(1)e^(3x) +c_(2)e^(2x)