Home
Class 10
MATHS
If sin A = (1)/(2) then what is the valu...

If `sin A = (1)/(2)` then what is the value of (cot A -cos A)?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot A - \cos A \) given that \( \sin A = \frac{1}{2} \). ### Step-by-Step Solution: 1. **Identify the values of sine, cosine, and cotangent:** Given \( \sin A = \frac{1}{2} \), we can represent this in a right triangle where: - The opposite side (perpendicular) to angle A is \( 1 \) (since sine is opposite/hypotenuse). - The hypotenuse is \( 2 \). 2. **Use the Pythagorean theorem to find the adjacent side:** According to the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{opposite}^2 + \text{adjacent}^2 \] Plugging in the known values: \[ 2^2 = 1^2 + \text{adjacent}^2 \] \[ 4 = 1 + \text{adjacent}^2 \] \[ \text{adjacent}^2 = 4 - 1 = 3 \] \[ \text{adjacent} = \sqrt{3} \] 3. **Calculate \( \cot A \) and \( \cos A \):** - \( \cot A = \frac{\text{adjacent}}{\text{opposite}} = \frac{\sqrt{3}}{1} = \sqrt{3} \) - \( \cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2} \) 4. **Substitute values into the expression \( \cot A - \cos A \):** \[ \cot A - \cos A = \sqrt{3} - \frac{\sqrt{3}}{2} \] 5. **Simplify the expression:** To subtract these, we need a common denominator: \[ \sqrt{3} = \frac{2\sqrt{3}}{2} \] Thus, \[ \cot A - \cos A = \frac{2\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = \frac{2\sqrt{3} - \sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] ### Final Answer: \[ \cot A - \cos A = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 5

    EDUCART PUBLICATION|Exercise Part - A (Section - II)|20 Videos
  • SAMPLE PAPER 5

    EDUCART PUBLICATION|Exercise Part B (Section - III)|8 Videos
  • SAMPLE PAPER 12

    EDUCART PUBLICATION|Exercise PART - B (SECTION -V) |4 Videos
  • SAMPLE PAPER (SELF ASSESSMENT) 12

    EDUCART PUBLICATION|Exercise PART-B (Section-V)|4 Videos

Similar Questions

Explore conceptually related problems

if sin A=(1)/(2), then the value of cot A

If cot A=[(sin B)/((1- cos B))] , then what is the value of cot 2A ?

If sin^(2)x+sin^(2)y=1 , then what is the value of cot(x+y) ?

If 3 cos^2 A+7 sin^2 A=4 then what is the value of cot A. given that A is an acute angle

If sin^2 theta + sin^2 alpha =1 , then what is the value of cot (theta+alpha) ?

What is the value of (tan A + cot A) sin A x cos A ?

What is the value of (1+cot^(2)theta)sin^(2)theta

If cot theta =1//2 then find the values of sin2 theta and cos 2theta

If cot theta = (7)/(8) , then the value of ((1 + sin theta)(1- sin theta))/((1 + cos theta)(1- cos theta)) = _________