Home
Class 10
MATHS
In the figure, MN |\| BC " and " AM : M...

In the figure, `MN |\| BC " and " AM : MB = 1 : 3, " then " (ar(triangle AMN))/(ar(triangle ABC)) = `…………..

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(16)`
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    EDUCART PUBLICATION|Exercise VERY SHORT QUESTIONS|10 Videos
  • TRIANGLES

    EDUCART PUBLICATION|Exercise SHORT ANSWER (SA-I) TYPE QUESTIONS|30 Videos
  • TRIANGLES

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • SURFACE AREAS AND VOLUMES

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|30 Videos

Similar Questions

Explore conceptually related problems

In the DeltaABC , MN||BC and AM : : MB = 1/3 . Then, (ar(DeltaAMN))/(ar(DeltaABC)) =?

In the given figure, MN||BC and AM: MB=1:2 Find ("area" (Delta AMN))/("area" (Delta ABC))

If triangle ABC - triangle PQR and (BC)/(QR) = 1/4 then (ar(trianglePQR))/(ar(triangleABC)) =

In triangle ABC , AD is median and P is the point on AD such that AP : PD = 3 : 4, then ar(triangle APB) :ar(triangle ABC) is equal to : त्रिभुज ABC में, AD मध्यिका है तथा P, AD पर स्थित ऐसा बिंदु है कि AP : PD = 3 : 4 है, तो ar(triangle APB) :ar(triangle ABC) का मान किसके बराबर होगा ?

In (DeltaABC) , MN||BC and AM:AB=1/3 . Then find the ratio of (ar(DeltaAMN))/(ar(DeltaABC))

In the given figure DE||BC and AD:DB =5:4 Find the ratio ar (Delta DEF) : ar (Delta CFB)

In triangle ABC ,AD is a median and P is a point on AD such that AP : PD = 3 : 4. Then ar (triangle BPD): ar (triangle ABC) is equal to: त्रिभुज ABC में, AD एक माध्यिका है और P, AB पर स्थित ऐसा बिंदु है कि AP : PD = 3 : 4 है| ar (triangle BPD): ar (triangle ABC) ज्ञात करें |

In triangle ABC , AD is median and G is the point on AD such that AG: GD = 2: 1, then ar(triangle ABG) :ar(triangle ABC) is equal to : त्रिभुज ABC में, AD मध्यिका है तथा G, AD पर स्थित ऐसा बिंदु है कि AG: GD = 2 : 1 है, तो ar(triangle ABG) :ar(triangle ABC) का मान किसके बराबर होगा ?

In the adjoining figure, triangle ABC and triangleDBC are on the same base BC with A and D on opposite sides of BC such that ar(triangleABC)=ar(triangleDBC) . Show that BC bisect AD.

ABC is a triangle in which D is the midpoint of BC and E is the midpoint of AD. Prove that ar(triangleBED)=(1)/(4)ar(triangleABC) .