Home
Class 10
MATHS
Value of (2 tan^(2) 60^(@))/(1 + tan^(2)...

Value of `(2 tan^(2) 60^(@))/(1 + tan^(2) 30^(@))` = _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{2 \tan^2 60^\circ}{1 + \tan^2 30^\circ}\), we will follow these steps: ### Step 1: Find the values of \(\tan^2 60^\circ\) and \(\tan^2 30^\circ\) - We know that: \[ \tan 60^\circ = \sqrt{3} \] Therefore, \[ \tan^2 60^\circ = (\sqrt{3})^2 = 3 \] - Also, we know that: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \] Therefore, \[ \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] ### Step 2: Substitute these values into the expression Now substituting the values we found into the expression: \[ \frac{2 \tan^2 60^\circ}{1 + \tan^2 30^\circ} = \frac{2 \cdot 3}{1 + \frac{1}{3}} \] ### Step 3: Simplify the denominator Now, simplify the denominator: \[ 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} \] ### Step 4: Rewrite the expression Now we can rewrite the expression: \[ \frac{2 \cdot 3}{\frac{4}{3}} = \frac{6}{\frac{4}{3}} \] ### Step 5: Simplify the fraction To simplify \(\frac{6}{\frac{4}{3}}\), we multiply by the reciprocal: \[ 6 \cdot \frac{3}{4} = \frac{18}{4} \] ### Step 6: Reduce the fraction Now, reduce \(\frac{18}{4}\): \[ \frac{18}{4} = \frac{9}{2} \] ### Final Answer Thus, the value of the expression \(\frac{2 \tan^2 60^\circ}{1 + \tan^2 30^\circ}\) is: \[ \frac{9}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Set III (Section - B)|2 Videos
  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Set III (Section - C)|3 Videos
  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Set II (Section - D)|2 Videos
  • ARITHMETIC PROGRESSIONS

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|44 Videos
  • CBSE TERM-1 SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Section -C|7 Videos

Similar Questions

Explore conceptually related problems

(2 tan 30^(@))/(1 + tan^(2)30^(@)) =

(2tan30^(@))/(1-tan^(2)30^(@))

Value of (2tan30^(@))/(1+ tan^(2)30^(@))

The value of (2tan30^(@))/(1+tan^(2)30^(@)) is :

The value of (2tan30^(@))/(1-tan^(2)30^(@)) is :

Find the vlaue of (2tan30^(@))/(1-tan^(2) 30^(@)) .

(1+tan^(2)60^(@))^(2)=

The value of (3 tan 30^(@)-tan^(3)30^(@))/(1- 3 tan^(2)30^(@)) is _______

((2 tan 30^@)/(1-tan^2 30^@)) =?

(2tan60^(@))/(1+tan^(2)60^(@)) is equal to :