Home
Class 10
MATHS
Evaluate (sec A + tan A) (1- sin A) for ...

Evaluate `(sec A + tan A) (1- sin A)` for `A = 60^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\sec A + \tan A)(1 - \sin A)\) for \(A = 60^\circ\), we will follow these steps: ### Step 1: Substitute \(A = 60^\circ\) into the expression We start with the expression: \[ (\sec 60^\circ + \tan 60^\circ)(1 - \sin 60^\circ) \] ### Step 2: Calculate \(\sec 60^\circ\), \(\tan 60^\circ\), and \(\sin 60^\circ\) Using trigonometric values: - \(\sec 60^\circ = \frac{1}{\cos 60^\circ} = \frac{1}{\frac{1}{2}} = 2\) - \(\tan 60^\circ = \frac{\sin 60^\circ}{\cos 60^\circ} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}\) - \(\sin 60^\circ = \frac{\sqrt{3}}{2}\) ### Step 3: Substitute the values into the expression Now we substitute these values back into the expression: \[ (2 + \sqrt{3})(1 - \frac{\sqrt{3}}{2}) \] ### Step 4: Simplify \(1 - \sin 60^\circ\) Calculating \(1 - \sin 60^\circ\): \[ 1 - \frac{\sqrt{3}}{2} = \frac{2}{2} - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2} \] ### Step 5: Multiply the two parts Now we multiply: \[ (2 + \sqrt{3}) \left(\frac{2 - \sqrt{3}}{2}\right) \] This can be simplified as: \[ \frac{(2 + \sqrt{3})(2 - \sqrt{3})}{2} \] ### Step 6: Use the difference of squares Using the difference of squares formula \(a^2 - b^2\): \[ (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Thus, we have: \[ \frac{1}{2} \] ### Final Answer The value of the expression \((\sec 60^\circ + \tan 60^\circ)(1 - \sin 60^\circ)\) is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Set III (Section - B)|2 Videos
  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Set III (Section - C)|3 Videos
  • CBSE PAPER (12 MARCH 2020)

    EDUCART PUBLICATION|Exercise Set II (Section - D)|2 Videos
  • ARITHMETIC PROGRESSIONS

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|44 Videos
  • CBSE TERM-1 SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Section -C|7 Videos

Similar Questions

Explore conceptually related problems

(sec A+ tan A) (1 - sin A) equals to

The value of [(sec A+tan A)(1-sin A)] is equal to tan^(2)Asin A

Prove: (sec A-tan A)^(2)=(1-sin A)/(1+sin A)

(sec A (sec A + tan A)(1-sin A))/ ((cosec^2 A-1)sin^2 A) is equal to: (sec A (sec A + tan A)(1-sin A))/ ((cosec^2 A-1)sin^2 A) का मान क्या होगा ?

Prove that (sec A-tan A)^(2)(1+sin A)=1-sin A

Evaluate : 2 sec 30^(@) xx tan 60^(@)

Evaluate : (sin 30^(@) + tan45^(@) - cosec 60^(@))/(sec 30^(@) + cos 60^(@) + cot 45^(@))

(tan A + sec A-1) / (tan A-sec A + 1) = (1 + sin A) / (cos A)

Prove that (1+sec A-tan A)/(1+sec A+tan A)=1-sin A/(cos A)