Home
Class 10
MATHS
O is any point inside a triangle A B C ....

`O` is any point inside a triangle `A B C` . The bisector of `/_A O B ,/_B O C` and `/_C O A` meet the sides `A B ,B C` and `C A` in point `D ,Ea n dF` respectively. Show that `A D x B E x C F=D B x E C x F A`

Text Solution

Verified by Experts

The correct Answer is:
Hence proved
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V)|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise PART - B (SECTION - III)|8 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V) |8 Videos
  • SAMPLE PAPER 9

    EDUCART PUBLICATION|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

X Y isa line parallel to side B C of A B CdotB E A and C F A B meet X Y in E and F respectively.Show that a r( A B E)=a r( A C F)dot

The diagonals of a rectangle A B C D\ meet at O . If /_B O C=44^0, find /_O A D

Let A B C be an isosceles triangle with A B=A C and let D ,\ E ,\ F be the mid points of B C ,\ C A\ a n d\ A B respectively. Show that A D_|_F E\ a n d\ A D is bisected by F E

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

In a parallelogram A B C D ,E ,F are any two points on the sides A B and B C respectively. Show that a r( A D F)=a r( D C E)dot

In Figure, A B C D is a parallelogram and X ,Y are the mid=points of sides A B and D C respectively. Show that A X C Y is a parallelogram. Figure

In Figure, A B C is a right triangle right angled at A ,\ B C E D ,\ A C F G\ a n d\ A M N are square on the sides B C ,\ C A\ a n d\ A B respectively. Line segment A X\ _|_D E meets B C at Ydot Show that: a r\ (C Y X E)=2a r(\ F C B)

In Fig. 6.13, lines AB and CD intersect at O. If /_A O C\ +/_B O E=70^@ and /_B O D=40^@ , find /_B O E and reflex /_C O E .

In Figure, A B C is a right triangle right angled at A ,\ B C E D ,\ A C F G\ a n d\ A M N are square on the sides B C ,\ C A\ a n d\ A B respectively. Line segment A X\ _|_D E meets B C at Ydot Show that: a r\ (C Y X E)=\ a r\ (A C F G)

In Figure, A B C is a right triangle right angled at A ,\ B C E D ,\ A C F G\ a n d\ A M N are square on the sides B C ,\ C A\ a n d\ A B respectively. Line segment A X\ _|_D E meets B C at Ydot Show that: \ F C B~=\ A C E