Home
Class 10
MATHS
If sin B = 0.5, find the value of 3 cos ...

If sin B = 0.5, find the value of 3 cos `B-4cos^(3)B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information that \( \sin B = 0.5 \). We need to find the value of \( 3 \cos B - 4 \cos^3 B \). ### Step 1: Find \( \cos B \) Since we know \( \sin B = 0.5 \), we can use the Pythagorean identity: \[ \sin^2 B + \cos^2 B = 1 \] Substituting \( \sin B \): \[ (0.5)^2 + \cos^2 B = 1 \] Calculating \( (0.5)^2 \): \[ 0.25 + \cos^2 B = 1 \] Now, isolate \( \cos^2 B \): \[ \cos^2 B = 1 - 0.25 = 0.75 \] Taking the square root to find \( \cos B \): \[ \cos B = \sqrt{0.75} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] ### Step 2: Substitute \( \cos B \) into the expression Now that we have \( \cos B = \frac{\sqrt{3}}{2} \), we can substitute this value into the expression \( 3 \cos B - 4 \cos^3 B \). First, we calculate \( \cos^3 B \): \[ \cos^3 B = \left(\frac{\sqrt{3}}{2}\right)^3 = \frac{(\sqrt{3})^3}{2^3} = \frac{3\sqrt{3}}{8} \] Now substitute \( \cos B \) and \( \cos^3 B \) into the expression: \[ 3 \cos B - 4 \cos^3 B = 3 \left(\frac{\sqrt{3}}{2}\right) - 4 \left(\frac{3\sqrt{3}}{8}\right) \] Calculating \( 3 \cos B \): \[ 3 \cos B = 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \] Calculating \( 4 \cos^3 B \): \[ 4 \cos^3 B = 4 \cdot \frac{3\sqrt{3}}{8} = \frac{12\sqrt{3}}{8} = \frac{3\sqrt{3}}{2} \] ### Step 3: Combine the results Now, we combine the results: \[ 3 \cos B - 4 \cos^3 B = \frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} = 0 \] ### Final Answer Thus, the value of \( 3 \cos B - 4 \cos^3 B \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

ig sin B=(1)/(2) then prove that 3cos B-4cos^(3)B=0

If tan A =a/b , then find the value of ("a sin A- b cos A")/("a sin A + b cos A") .

If A is in the 3rd quardrant and B is the the fourth quadrant and cos A = -15/17 , cos B = 4/5 , find the value of cos (A+B).

If sin A+sin B + sin C =3, then the value of cos A + cos B + cos C is

If sin (A-B)=sin A cos B-cos A sin B and cos (A - B) = cos A cos B + sin A sin B . find the values of sin 15^@ and cos 15^@.

If sin A+sin B=p,cos A+cos B=q Find the value of cos2A+cos2B

Suppose A and B are two angles such that A,B in(0,pi) and satisfy sin A+sin B=1 and cos A+cos B=0. Then the value of 12cos2A+4cos2B is

Using the formula of sin(A-B)=sin A cos B-cos A sin B find the value of sin15^(@)

If cos A+cos B+cos C=0sin A+sin B+sin C=0 and A+B+C=180^(@), then the value of cos3A+cos3B+cos3C is