Home
Class 10
MATHS
Find the value of (1+cos A)(1-cos A)cose...

Find the value of `(1+cos A)(1-cos A)cosec^(2)A`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \cos A)(1 - \cos A) \csc^2 A\), we can follow these steps: ### Step 1: Use the difference of squares formula We recognize that \((1 + \cos A)(1 - \cos A)\) is in the form of \( (a + b)(a - b) = a^2 - b^2 \). Here, \(a = 1\) and \(b = \cos A\). \[ (1 + \cos A)(1 - \cos A) = 1^2 - (\cos A)^2 = 1 - \cos^2 A \] ### Step 2: Apply the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 A + \cos^2 A = 1 \] Thus, we can express \(1 - \cos^2 A\) as: \[ 1 - \cos^2 A = \sin^2 A \] ### Step 3: Substitute back into the expression Now we substitute \(\sin^2 A\) back into the original expression: \[ (1 + \cos A)(1 - \cos A) \csc^2 A = \sin^2 A \csc^2 A \] ### Step 4: Simplify using the definition of cosecant Recall that \(\csc A = \frac{1}{\sin A}\), therefore: \[ \csc^2 A = \frac{1}{\sin^2 A} \] Substituting this into our expression gives: \[ \sin^2 A \cdot \csc^2 A = \sin^2 A \cdot \frac{1}{\sin^2 A} \] ### Step 5: Final simplification The \(\sin^2 A\) in the numerator and denominator cancels out: \[ \sin^2 A \cdot \frac{1}{\sin^2 A} = 1 \] ### Conclusion Thus, the value of \((1 + \cos A)(1 - \cos A) \csc^2 A\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 10 SOLVED

    EDUCART PUBLICATION|Exercise PART - A (SECTION - II) |20 Videos
  • SAMPLE PAPER 10 SOLVED

    EDUCART PUBLICATION|Exercise PART - B (SECTION - III) |8 Videos
  • SAMPLE PAPER 10 (SELF-ASSESSMENT)

    EDUCART PUBLICATION|Exercise Section-C (Case Study Based Questions)|10 Videos
  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise PART -B (SECTION-V)|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1-cos^(2)A)*"cosec"^(2)A .

The value of (1+ cos theta)(1- cos theta) "cosec"^(2) theta =

Find the value of (sinA + cos A) times cosec A , if cot A = (12)/(5) .

If csc A=2, find the value of (1)/(tan A)+(sin A)/(1+cos A)

Find the value of cos1^(@).cos2^(@).cos3^(@).cos90^(@)

The value of ((sin A)/(1-cos A)+(1-cos A)/(sinA) div ((cot^2 A)/(1+cosec A)+1) is:

(1)/(1-cos A)+(1)/(1+cos A)=2csc^(2)

Find the value of (sin 50^(@))/(cos40^(@))+("cosec"40^(@))/(sec 50^(@))-4cos 50^(@) " cosec"40^(@).

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1) . 1/x + cos ^(-1) . 1/y .

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)