Home
Class 10
MATHS
What is the value of (cos^2A)/(cos^2B), ...

What is the value of `(cos^2A)/(cos^2B)`, if `tan^2` A = 1 +2 `tan^2` B?

A

`sqrt3`

B

`1/2`

C

`1/sqrt3`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{\cos^2 A}{\cos^2 B}\) given that \(\tan^2 A = 1 + 2 \tan^2 B\), we can follow these steps: ### Step 1: Start with the given equation We have: \[ \tan^2 A = 1 + 2 \tan^2 B \] ### Step 2: Add 1 to both sides Adding 1 to both sides gives: \[ 1 + \tan^2 A = 1 + (1 + 2 \tan^2 B) \] This simplifies to: \[ 1 + \tan^2 A = 2 + 2 \tan^2 B \] ### Step 3: Use the identity for secant Using the identity \(1 + \tan^2 \theta = \sec^2 \theta\), we can rewrite the left side: \[ \sec^2 A = 2 + 2 \tan^2 B \] ### Step 4: Factor the right side We can factor out a 2 from the right side: \[ \sec^2 A = 2(1 + \tan^2 B) \] ### Step 5: Apply the identity again Using the identity again on the right side: \[ \sec^2 A = 2 \sec^2 B \] ### Step 6: Relate secant to cosine Recall that \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\). Therefore, we can write: \[ \frac{1}{\cos^2 A} = 2 \cdot \frac{1}{\cos^2 B} \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ \cos^2 B = 2 \cos^2 A \] ### Step 8: Rearranging the equation This can be rearranged to find \(\frac{\cos^2 A}{\cos^2 B}\): \[ \frac{\cos^2 A}{\cos^2 B} = \frac{1}{2} \] ### Conclusion Thus, the value of \(\frac{\cos^2 A}{\cos^2 B}\) is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 07

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 07

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 03 (MATHEMATICS)

    EDUCART PUBLICATION|Exercise SECTION D|12 Videos
  • SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

The value of cos(tan^(-1)(tan2)) is

Prove: (1-cos^2 A)cdot sec^2B + tan^2B (1-sin^2A) = sin^2A+tan^2B .

What is the value of (tan 9^(@) tan 23^(@) tan 60^(@) tan67^(@) tan 81^(@))/("cosec"^(2)72^(@)+cos^(2)15^(@)-tan^(2)18^(@)+cos^(2)75^(@))? (a) (1)/(2 sqrt(3)) (b) (sqrt(3))/(2) (c) (1)/(sqrt(3)) (d) 2 sqrt(3)

if 3tan A tan B=1 then 2cos(A+B)

44.If tan A=(1-cos B)/(sin B), find tan2A in terms of tan B

If tan A=(1-cos B)/(sin B), then tan2A=tan B

If tan A = (1 - cos B)/(sin B), then what is (2 tan A )/( 1 - tan ^(2) A ) equal to ?

If tan A = (1-cos B)//sinB , then tan 2A = tan B.

If tan A= (1- cos B)/(sin B), then tan 2A is equal to

(sin A + sin B) / (cos A + cos B) = tan ((A + B) / (2))