Home
Class 10
MATHS
If sin A=3/5 , then the value of sec A i...

If `sin A=3/5` , then the value of sec A is:

A

`4/5`

B

`3/4`

C

`4/3`

D

`5/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sec A \) given that \( \sin A = \frac{3}{5} \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 A + \cos^2 A = 1 \] Given \( \sin A = \frac{3}{5} \), we can square this value: \[ \sin^2 A = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \] ### Step 2: Substitute into the Identity Now we substitute \( \sin^2 A \) into the Pythagorean identity: \[ \frac{9}{25} + \cos^2 A = 1 \] ### Step 3: Solve for \( \cos^2 A \) To find \( \cos^2 A \), we rearrange the equation: \[ \cos^2 A = 1 - \frac{9}{25} \] To perform the subtraction, we need a common denominator: \[ 1 = \frac{25}{25} \] Thus, \[ \cos^2 A = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] ### Step 4: Find \( \cos A \) Now we take the square root of \( \cos^2 A \): \[ \cos A = \sqrt{\frac{16}{25}} = \frac{4}{5} \] Since we are considering angles in the first quadrant, \( \cos A \) is positive. ### Step 5: Calculate \( \sec A \) The secant function is the reciprocal of the cosine function: \[ \sec A = \frac{1}{\cos A} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] ### Final Answer Thus, the value of \( \sec A \) is: \[ \sec A = \frac{5}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin 17^@ = x/y ,then the value of sec 17^@ - sin 73^@ is

If sin A=(5)/(13), then find the value of sec A cos ecA+tan A

If k + 1 = sec^2A (1 - sin A) (1 + sin A), then the value of k is:

If 3tan A'+cot A=5cos ecA, then the value of (sec A+4sin^(2)A) is equal to

If 0^@ lt A lt 90^@ and sin A= 4/5 , find the value of tan A + sec A ?

If 3 sin A+5 cos A =5, then the value of (3 cos A-5 sin A )^(2) is

If sin x = (3)/(5), 0 le x le 90^(@) , then the value of cot x.sec x is :