Home
Class 10
MATHS
What is the value of m^2-n^2, where m= t...

What is the value of `m^2-n^2`, where `m= tan theta + sin theta and n = tan theta - sin theta` ?

A

`sqrt(m/n)`

B

`4sqrt(mn)`

C

`sqrt(mn)`

D

`4sqrt(m/n)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( m^2 - n^2 \) where \( m = \tan \theta + \sin \theta \) and \( n = \tan \theta - \sin \theta \), we can follow these steps: ### Step 1: Write down the expressions for \( m \) and \( n \) Given: \[ m = \tan \theta + \sin \theta \] \[ n = \tan \theta - \sin \theta \] ### Step 2: Use the difference of squares formula We know that: \[ m^2 - n^2 = (m+n)(m-n) \] First, we need to calculate \( m+n \) and \( m-n \). ### Step 3: Calculate \( m+n \) and \( m-n \) \[ m+n = (\tan \theta + \sin \theta) + (\tan \theta - \sin \theta) = 2\tan \theta \] \[ m-n = (\tan \theta + \sin \theta) - (\tan \theta - \sin \theta) = 2\sin \theta \] ### Step 4: Substitute \( m+n \) and \( m-n \) into the difference of squares formula Now substituting back into the formula: \[ m^2 - n^2 = (m+n)(m-n) = (2\tan \theta)(2\sin \theta) = 4\tan \theta \sin \theta \] ### Step 5: Simplify \( 4\tan \theta \sin \theta \) Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \): \[ 4\tan \theta \sin \theta = 4 \left(\frac{\sin \theta}{\cos \theta}\right) \sin \theta = 4 \frac{\sin^2 \theta}{\cos \theta} \] ### Final Result Thus, the value of \( m^2 - n^2 \) is: \[ m^2 - n^2 = 4 \frac{\sin^2 \theta}{\cos \theta} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta+sin theta=m and tan theta-sin theta=n

(iii) tan theta-sin theta=sin theta tan theta-1

tan^(2)theta-sin^(2)theta-tan^(2)theta sin^(2)theta

5. sin m theta=sin n theta

cos m theta=sin n theta then theta=

What is the value of sin^(2)theta+(1)/(1+tan^(2)theta)?