Home
Class 10
MATHS
Evaluate (y^(2))/(b^(2))-(x^(2))/(a^(2))...

Evaluate `(y^(2))/(b^(2))-(x^(2))/(a^(2))`, where `x= a tan theta and y = b sec theta`

A

0

B

1

C

`-1`

D

3

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 9 (SELF-ASSESSMENT)

    EDUCART PUBLICATION|Exercise Section -B|20 Videos
  • SAMPLE PAPER 9 (SELF-ASSESSMENT)

    EDUCART PUBLICATION|Exercise Section-C (Case Study Based Questions)|10 Videos
  • SAMPLE PAPER 9

    EDUCART PUBLICATION|Exercise SECTION C|10 Videos
  • SAMPLE PAPER SELF ASSESSMENT 11

    EDUCART PUBLICATION|Exercise Section (iv)|13 Videos

Similar Questions

Explore conceptually related problems

Evaluate (y^(2))/(b^(2))-(x^(2))/(a^(2)) , whre x=a tan theta and y= b sec theta .

x =a tan theta ,y =b sec theta

Find the equations of the tangent and the normal to the given curve at the indicated point : (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 " at ' (a sec theta, b tan theta)

Prove that b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) , if x=a sec theta,y=b tan theta

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

If the chord joining the points (a sec theta_(1),b tan theta_(1)) and (a sec theta_(2),b tan theta_(2)) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is a focal chord,then prove that tan((theta_(1))/(2))tan((theta_(2))/(2))+(ke-1)/(ke+1)=0, where k=+-1

If (a sec theta,b tan theta) and (a sec phi,b tan phi) be two coordinate of the ends of a focal chord passing through (ae,0) of (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 then tan((theta)/(2))tan((phi)/(2)) equals to

If the line y = mx + sqrt(a^(2)m^(2) - b^(2)) touches the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 at the point (a sec theta, b tan theta) , then find theta .

Given that x=a tan theta, y = b sec theta . Find (dy)/(dx) .