Home
Class 12
MATHS
If v =  log ( 1 + x^(2)) and u = x - ta...

If ` v =  log ( 1 + x^(2)) and u = x - tan^(-1) x ` then ` ,( du)/( dv)` is equal to

A

`e ^(x) - y `

B

` e^(x) - 1 `

C

2/x

D

` x^(2) - 1 `

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{du}{dv}\), we will first need to compute \(\frac{du}{dx}\) and \(\frac{dv}{dx}\), and then use the relationship \(\frac{du}{dv} = \frac{du/dx}{dv/dx}\). ### Step 1: Calculate \(v = \log(1 + x^2)\) To find \(\frac{dv}{dx}\): \[ v = \log(1 + x^2) \] Using the chain rule: \[ \frac{dv}{dx} = \frac{1}{1 + x^2} \cdot \frac{d}{dx}(1 + x^2) \] The derivative of \(1 + x^2\) is: \[ \frac{d}{dx}(1 + x^2) = 0 + 2x = 2x \] Thus, \[ \frac{dv}{dx} = \frac{1}{1 + x^2} \cdot 2x = \frac{2x}{1 + x^2} \] ### Step 2: Calculate \(u = x - \tan^{-1}(x)\) Now, we find \(\frac{du}{dx}\): \[ u = x - \tan^{-1}(x) \] The derivative of \(x\) is \(1\) and the derivative of \(\tan^{-1}(x)\) is \(\frac{1}{1 + x^2}\): \[ \frac{du}{dx} = 1 - \frac{1}{1 + x^2} \] Simplifying this: \[ \frac{du}{dx} = 1 - \frac{1}{1 + x^2} = \frac{(1 + x^2) - 1}{1 + x^2} = \frac{x^2}{1 + x^2} \] ### Step 3: Find \(\frac{du}{dv}\) Now we can find \(\frac{du}{dv}\): \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{\frac{x^2}{1 + x^2}}{\frac{2x}{1 + x^2}} \] The \((1 + x^2)\) terms cancel out: \[ \frac{du}{dv} = \frac{x^2}{2x} \] This simplifies to: \[ \frac{du}{dv} = \frac{x}{2} \] ### Final Answer Thus, the value of \(\frac{du}{dv}\) is: \[ \frac{du}{dv} = \frac{x}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =

log(tan^(-1)x)

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

If u=3x^(12) and v=x^(6) then (du)/(dv) is

If f^(1)(x)=(1)/(1+(ln x)^(2)) and y=f(e^(tan x)) then (dy)/(dx) is equal to

If f'(1) = 2 and v = f (log_(e)x) , then ( dv)/(dx) is for x = e

(V + 1) / (V (2V + 1)) dv = - (1) / (x) dx

If u=e^(ax)sinbx and v=e^(ax)cosbx . then what is u(du)/(dx)+v(dv)/(dx) equal to ?