Home
Class 12
MATHS
If [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5...

If ` [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5,6),(1,0)]` , then ` a^(2) + b^(2) ` is equal to

A

10

B

12

C

20

D

22

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we will follow these steps: **Step 1: Write down the matrices.** We have: \[ \begin{pmatrix} 1 & 2 \\ -2 & -b \end{pmatrix} + \begin{pmatrix} a & 4 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 0 \end{pmatrix} \] **Step 2: Add the matrices on the left-hand side.** We add the corresponding elements of the matrices: - First element: \(1 + a\) - Second element: \(2 + 4 = 6\) - Third element: \(-2 + 3 = 1\) - Fourth element: \(-b + 2\) Thus, the left-hand side becomes: \[ \begin{pmatrix} 1 + a & 6 \\ 1 & 2 - b \end{pmatrix} \] **Step 3: Set the left-hand side equal to the right-hand side.** Now we equate the left-hand side to the right-hand side: \[ \begin{pmatrix} 1 + a & 6 \\ 1 & 2 - b \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 1 & 0 \end{pmatrix} \] **Step 4: Create equations from the matrix equality.** From the matrix equality, we can derive the following equations: 1. \(1 + a = 5\) 2. \(2 - b = 0\) **Step 5: Solve for \(a\) and \(b\).** From the first equation: \[ 1 + a = 5 \implies a = 5 - 1 = 4 \] From the second equation: \[ 2 - b = 0 \implies b = 2 \] **Step 6: Calculate \(a^2 + b^2\).** Now we need to find \(a^2 + b^2\): \[ a^2 + b^2 = 4^2 + 2^2 = 16 + 4 = 20 \] Thus, the final answer is: \[ \boxed{20} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

adj- [{:( 1,0,2),(-1,1,-2),(0,2,1):}]=[{:(5,a,-2),(1,1,0),(-2,-2,b):}] , then [a, b] is equal to-

If 2A+3B=[(2,-1,4),(3,2,5)] and A+2B=[(5,0,3),(1,6,2)] , then B is

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

If A=[(1,2,8)],B=[(4),(5),(6)] , and C=[(0,2,0)] and D=[(5),(2),(4)] , then AB + CD is equal to

If a : b = 2: 5 , then ( 3a+ 4b) : (5a +6b) is equal to

If A+2B=[(2,-4),(1,6)],A prime+B prime=[(1,2),(0,-1)], then A is equal to