Home
Class 12
MATHS
If matrix P = [(0,2),(3,-4)] and kP = [ ...

If matrix P `= [(0,2),(3,-4)] and kP = [ (0,3a),(2b,24)]` where k, a and b are constants, then the values of k, a, b respectively are

A

` 6, 4, 9`

B

`- 6, 4, 9`

C

`6, - 4, -9`

D

`-6, - 4, -9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of the constants \( k \), \( a \), and \( b \) given the matrices \( P \) and \( kP \). ### Given: - Matrix \( P = \begin{pmatrix} 0 & 2 \\ 3 & -4 \end{pmatrix} \) - Matrix \( kP = \begin{pmatrix} 0 & 3a \\ 2b & 24 \end{pmatrix} \) ### Step-by-Step Solution: 1. **Calculate \( kP \)**: To find \( kP \), we multiply each element of matrix \( P \) by \( k \): \[ kP = k \begin{pmatrix} 0 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 0 \cdot k & 2 \cdot k \\ 3 \cdot k & -4 \cdot k \end{pmatrix} = \begin{pmatrix} 0 & 2k \\ 3k & -4k \end{pmatrix} \] 2. **Set up the equations**: Now, we can equate the elements of \( kP \) with those of the given matrix \( kP \): \[ \begin{pmatrix} 0 & 2k \\ 3k & -4k \end{pmatrix} = \begin{pmatrix} 0 & 3a \\ 2b & 24 \end{pmatrix} \] This gives us the following equations: - From the first element: \( 0 = 0 \) (always true) - From the second element: \( 2k = 3a \) (Equation 1) - From the third element: \( 3k = 2b \) (Equation 2) - From the fourth element: \( -4k = 24 \) (Equation 3) 3. **Solve for \( k \)**: From Equation 3: \[ -4k = 24 \implies k = \frac{24}{-4} = -6 \] 4. **Substitute \( k \) into Equation 1**: Substitute \( k = -6 \) into Equation 1: \[ 2(-6) = 3a \implies -12 = 3a \implies a = \frac{-12}{3} = -4 \] 5. **Substitute \( k \) into Equation 2**: Substitute \( k = -6 \) into Equation 2: \[ 3(-6) = 2b \implies -18 = 2b \implies b = \frac{-18}{2} = -9 \] ### Final Values: Thus, we have: - \( k = -6 \) - \( a = -4 \) - \( b = -9 \) ### Conclusion: The values of \( k \), \( a \), and \( b \) are \( -6 \), \( -4 \), and \( -9 \) respectively.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(0,2),(3,-4)] and kA =[(0,3 a),(2b,24)] , then the values of k, a and b respectively are:

If A=[{:(0,2),(3,-4):}] and k A =[{:(0,3a),(2b,24):}], then find the value of b-a-k.

If A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),(2b,24)]:} , then the values of k,a,b are respectively.

If A = [{:(0,3),(4,5):}] and kA = [{:(0, 4a),(3b, 60):}] , then value of k , a and b are respectively

If [[0, a, b],[-2, 0, -9],[-3, 9, 0]] is a skew-symmetric matrix, then the values of a, b respectively are :

If A=[[0,23,-4]] and kA=[[0,3a2b,24]], then the values of k,a,b, are respectively (a)-6,-12,-18(b)-6,4,9(c)-6,-4,-9(d)-6,12,18

If B=[{:(6,3),(-2,k):}] is singular matrix then the value of k is____