Home
Class 12
MATHS
For a function y = x cos x then ( d^(2)...

For a function y = x cos x then ` ( d^(2) y)/( dx^(2))` is equal to

A

` - x cos x - 2 sin x `

B

` x cos x + 2 sin x `

C

` x sin x + cos x `

D

` - x sin x + cos x `

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = x \cos x \), we will follow these steps: ### Step 1: Differentiate the function \( y = x \cos x \) to find the first derivative \( \frac{dy}{dx} \). Using the product rule, which states that if \( u \) and \( v \) are functions of \( x \), then \( \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \). Let: - \( u = x \) (so \( \frac{du}{dx} = 1 \)) - \( v = \cos x \) (so \( \frac{dv}{dx} = -\sin x \)) Now applying the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} = x(-\sin x) + \cos x(1) \] This simplifies to: \[ \frac{dy}{dx} = -x \sin x + \cos x \] ### Step 2: Differentiate \( \frac{dy}{dx} \) to find the second derivative \( \frac{d^2y}{dx^2} \). Now we need to differentiate \( \frac{dy}{dx} = -x \sin x + \cos x \). Again, we will use the product rule on the term \( -x \sin x \): Let: - \( u = -x \) (so \( \frac{du}{dx} = -1 \)) - \( v = \sin x \) (so \( \frac{dv}{dx} = \cos x \)) Applying the product rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(-x \sin x) + \frac{d}{dx}(\cos x) \] Calculating the first part: \[ \frac{d}{dx}(-x \sin x) = -x \cos x + (-1)(\sin x) = -x \cos x - \sin x \] And for the second part: \[ \frac{d}{dx}(\cos x) = -\sin x \] Combining these results gives: \[ \frac{d^2y}{dx^2} = (-x \cos x - \sin x) + (-\sin x) = -x \cos x - 2\sin x \] ### Final Result: Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = -x \cos x - 2\sin x \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

If y=Ae^(5x) , then (d^(2)y)/(dx^(2)) is equal to

If y =5 cos x -3 sin x," then " (d^(2)y)/(dx^(2)) is equal to :

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y = 5 cos x - 3 sin x, then (d^2y)/(dx^2) is equal to :

If y=log (log x) then (d^2y)/(dx^2) is equal to

If the function y= sin^(-1)x, "then" (1-x^(2))(d^(2)y)/(dx^(2)) is equal to

If x=at^(2),y=2at then (d^(2)y)/(dx^(2)) is equal to