Home
Class 12
MATHS
The minor M(31) if Delta = |(1, a, bc)...

The minor `M_(31)` if ` Delta = |(1, a, bc),(1, b, ca),(1, c, ab)|` is

A

` - c ( a^(2) - b^(2))`

B

` x ( b^(2) - a^(2))`

C

` c( a^(2) + b^(2))`

D

` c ( a^(2) - b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minor \( M_{31} \) of the determinant \( \Delta = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} \), we will follow these steps: ### Step 1: Identify the Minor The minor \( M_{31} \) is the determinant formed by removing the 3rd row and 1st column from the original determinant \( \Delta \). ### Step 2: Form the Reduced Matrix After removing the 3rd row and 1st column, we are left with the following 2x2 matrix: \[ \begin{vmatrix} a & bc \\ b & ca \end{vmatrix} \] ### Step 3: Calculate the Determinant of the 2x2 Matrix The determinant of a 2x2 matrix \( \begin{vmatrix} p & q \\ r & s \end{vmatrix} \) is calculated as \( ps - qr \). Therefore, for our matrix: \[ M_{31} = (a)(ca) - (bc)(b) = aca - b^2c \] ### Step 4: Factor the Result Now, we can factor out \( c \) from the expression: \[ M_{31} = c(a^2 - b^2) \] ### Final Answer Thus, the minor \( M_{31} \) is: \[ M_{31} = c(a^2 - b^2) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

|(1/a,a^2,bc),(1/b,b^2,ca),(1/c,c^2,ab)|=........

Delta=det[[1,a,bc1,b,ca1,c,ab]]

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

The value of |(1,1,1),(bc,ca,ab),(b+c,c+a,a+b)| is :

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

|[1,a, bc] ,[1, b, ca], [1, c, ab]| = (a-b)(b-c)(c-a)