Home
Class 12
MATHS
If [(1,2,1)][(1,2,0),(2,0,1),(1,0,2)] [...

If ` [(1,2,1)][(1,2,0),(2,0,1),(1,0,2)] [(0),(2),(x)]` = 0 , then the value of x is

A

0

B

`-1`

C

`-3`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we need to find the value of \( x \) such that: \[ \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} = 0 \] ### Step 1: Multiply the first two matrices First, we will multiply the first matrix \( \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \) with the second matrix \( \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \). Calculating the first row of the product: - The first element: \[ 1 \cdot 1 + 2 \cdot 2 + 1 \cdot 1 = 1 + 4 + 1 = 6 \] - The second element: \[ 1 \cdot 2 + 2 \cdot 0 + 1 \cdot 0 = 2 + 0 + 0 = 2 \] - The third element: \[ 1 \cdot 0 + 2 \cdot 1 + 1 \cdot 2 = 0 + 2 + 2 = 4 \] So, the result of the multiplication is: \[ \begin{pmatrix} 6 & 2 & 4 \end{pmatrix} \] ### Step 2: Multiply the result with the third matrix Next, we multiply the resulting matrix \( \begin{pmatrix} 6 & 2 & 4 \end{pmatrix} \) with the third matrix \( \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} \). Calculating the final result: - The result is: \[ 6 \cdot 0 + 2 \cdot 2 + 4 \cdot x = 0 + 4 + 4x = 4 + 4x \] ### Step 3: Set the result equal to zero Since we know that the entire multiplication equals the zero matrix, we set the equation: \[ 4 + 4x = 0 \] ### Step 4: Solve for \( x \) Now, we can solve for \( x \): \[ 4x = -4 \] \[ x = -1 \] Thus, the value of \( x \) is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(x),(1),(-2)]=[0] then x is

If [[1,x,1]][[1,2,3],[0,5,1],[0,3,2]][[x],[1],[-2]]=0 , then the value of x is

If [(x,1)][(1,0),(-2,0)] = 0, then x equals

If [1,x,2][[2,3,1],[0,4,2],[0,3,2]][[x],[1],[-1]]=0 , then the value of x is

If A=[(2,1),(0,x)] and A^(-1)=[(1/2,1/6),(0,1/x)] , then the value of x is equal to

If [1, x, 2][[2,3,1],[0,4,2],[0,3,2]][[x],[1],[-1]]=0, then the value of x is

Solve the matrix equations: [(x,1)][(1, 0),(-2,-3)][(x,5)]=0 (ii) [(1, 2, 1)][(1, 2, 0),( 2 ,0 ,1 ),(1 ,0 ,2)][(0 ),(2),(x)]=0