Home
Class 12
MATHS
If cot^(-1) ( - (1)/(sqrt(3))) =x then t...

If `cot^(-1) ( - (1)/(sqrt(3)))` =x then the value of sin x is

A

`- (sqrt(3))/(2)`

B

`(sqrt(3))/(2 )`

C

`-(1)/(2)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin x \) given that \( x = \cot^{-1} \left( -\frac{1}{\sqrt{3}} \right) \). ### Step-by-Step Solution: 1. **Understanding the Inverse Cotangent**: We start with the expression \( x = \cot^{-1} \left( -\frac{1}{\sqrt{3}} \right) \). The cotangent function is negative in the second quadrant. 2. **Using the Cotangent Identity**: We can use the identity for the cotangent of a negative angle: \[ \cot^{-1}(-\theta) = \pi - \cot^{-1}(\theta) \] Thus, we can rewrite our expression: \[ x = \pi - \cot^{-1} \left( \frac{1}{\sqrt{3}} \right) \] 3. **Finding \( \cot^{-1} \left( \frac{1}{\sqrt{3}} \right) \)**: We know that \( \cot \left( \frac{\pi}{3} \right) = \frac{1}{\sqrt{3}} \). Therefore: \[ \cot^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{3} \] 4. **Substituting Back to Find \( x \)**: Now substituting this back into our equation for \( x \): \[ x = \pi - \frac{\pi}{3} \] To simplify this, we can express \( \pi \) as \( \frac{3\pi}{3} \): \[ x = \frac{3\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3} \] 5. **Calculating \( \sin x \)**: Now we need to find \( \sin x \): \[ \sin x = \sin \left( \frac{2\pi}{3} \right) \] We can use the sine identity: \[ \sin \left( \frac{2\pi}{3} \right) = \sin \left( \pi - \frac{\pi}{3} \right) = \sin \left( \frac{\pi}{3} \right) \] Since \( \sin(\pi - \theta) = \sin(\theta) \). 6. **Final Value of \( \sin \left( \frac{\pi}{3} \right) \)**: We know that: \[ \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \] ### Conclusion: Thus, the value of \( \sin x \) is: \[ \sin x = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(-sqrt(3))+cot^(-1)x=pi , then the value of x is :

If tan^(-1)x-cot^(-1)x=tan^(-1)(1)/(sqrt(3)) find the value of x.

If [ x cos ( cot^(-1) x ) + sin ( cot^(-1) x) ]^(2) = (51)/(50) then the positive value of x is

Write the value of sin(cot^(-1)x) .

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

If (cot^(2)x)/((1+sqrt(3)))+(1)/(2)(3-sqrt(3))=cotx , then what is the value of x ?

The value of cot(sin^(-1) x ) is :