Home
Class 12
MATHS
If xy^(2)= ax^(2) +bxy + y^(2) then (dy)...

If `xy^(2)= ax^(2) +bxy + y^(2)` then `(dy)/(dx)` =

A

`(2ax +by -y^(2))/(2xy - bx -2y)`

B

`(2x^(2) + axy+y^(2))/(x^(2) +y^(2)+2xy)`

C

`(2ax + by+y^(2))/(2xy +bx -2y)`

D

`(ax- by -xy)/(xy +x^(2) -y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( xy^2 = ax^2 + bxy + y^2 \) for \( \frac{dy}{dx} \), we will differentiate both sides with respect to \( x \). Here’s the step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ xy^2 = ax^2 + bxy + y^2 \] Now, we differentiate both sides with respect to \( x \). ### Step 2: Apply the product rule on the left side For the left side \( xy^2 \), we apply the product rule: \[ \frac{d}{dx}(xy^2) = x \frac{d}{dx}(y^2) + y^2 \frac{d}{dx}(x) \] Using the chain rule on \( y^2 \): \[ \frac{d}{dx}(y^2) = 2y \frac{dy}{dx} \] Thus, we have: \[ \frac{d}{dx}(xy^2) = x(2y \frac{dy}{dx}) + y^2(1) = 2xy \frac{dy}{dx} + y^2 \] ### Step 3: Differentiate the right side Now we differentiate the right side \( ax^2 + bxy + y^2 \): \[ \frac{d}{dx}(ax^2) + \frac{d}{dx}(bxy) + \frac{d}{dx}(y^2) \] - For \( ax^2 \): \[ \frac{d}{dx}(ax^2) = 2ax \] - For \( bxy \) (using the product rule): \[ \frac{d}{dx}(bxy) = b \left( x \frac{d}{dx}(y) + y \frac{d}{dx}(x) \right) = b \left( x \frac{dy}{dx} + y \right) \] - For \( y^2 \): \[ \frac{d}{dx}(y^2) = 2y \frac{dy}{dx} \] Putting it all together, the right side becomes: \[ 2ax + b\left(x \frac{dy}{dx} + y\right) + 2y \frac{dy}{dx} \] ### Step 4: Set the derivatives equal Now we equate the derivatives from both sides: \[ 2xy \frac{dy}{dx} + y^2 = 2ax + b\left(x \frac{dy}{dx} + y\right) + 2y \frac{dy}{dx} \] ### Step 5: Rearrange the equation Rearranging gives: \[ 2xy \frac{dy}{dx} - b x \frac{dy}{dx} - 2y \frac{dy}{dx} = 2ax + by - y^2 \] Factoring out \( \frac{dy}{dx} \): \[ \left(2xy - bx - 2y\right) \frac{dy}{dx} = 2ax + by - y^2 \] ### Step 6: Solve for \( \frac{dy}{dx} \) Finally, we isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{2ax + by - y^2}{2xy - bx - 2y} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{2ax + by - y^2}{2xy - bx - 2y} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

xy=(x+y)^(2) then find (dy)/(dx)

xy(dy)/(dx)=y+2

y^(2)+b^(2)=2xy then (dy)/(dx) is

If x^(2)+2xy+y^(3)=42, find (dy)/(dx)

If x^(2)+2xy+y^(3)=4, find (dy)/(dx)

x^(2)(dy)/(dx)=x^(2)+xy+y^(2)

y^(2)dx+(x^(2)+xy+y^(2))dy=0

If xy=1," then: "y^(2)+(dy)/(dx)=

Solve (x^(2) + y^(2))(dy)/(dx) = 2xy

If log(xy)x^(2)+y^(2)," then: "((dy)/(dx))((dx)/(dy))=