Home
Class 12
MATHS
If a^(b) . b^(a) = 16 then the value of...

If `a^(b) . b^(a) = 16 ` then the value of `(db)/(da)` at (2,2) is :

A

`-1`

B

1

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( a^b \cdot b^a = 16 \) and find the value of \( \frac{db}{da} \) at the point \( (2, 2) \), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides of the equation Given: \[ a^b \cdot b^a = 16 \] Differentiating both sides with respect to \( a \): \[ \frac{d}{da}(a^b \cdot b^a) = \frac{d}{da}(16) \] Since the right-hand side is a constant, its derivative is 0: \[ \frac{d}{da}(a^b \cdot b^a) = 0 \] ### Step 2: Apply the product rule Using the product rule for differentiation: \[ \frac{d}{da}(u \cdot v) = u \cdot \frac{dv}{da} + v \cdot \frac{du}{da} \] Let \( u = a^b \) and \( v = b^a \): \[ \frac{d}{da}(a^b) \cdot b^a + a^b \cdot \frac{d}{da}(b^a) = 0 \] ### Step 3: Differentiate \( a^b \) and \( b^a \) 1. Differentiate \( a^b \): \[ \frac{d}{da}(a^b) = b \cdot a^{b-1} + a^b \cdot \ln(a) \cdot \frac{db}{da} \] 2. Differentiate \( b^a \): \[ \frac{d}{da}(b^a) = b^a \cdot \ln(b) \] ### Step 4: Substitute back into the equation Substituting the derivatives back into the product rule equation: \[ \left(b \cdot a^{b-1} + a^b \cdot \ln(a) \cdot \frac{db}{da}\right) b^a + a^b \cdot b^a \cdot \ln(b) = 0 \] ### Step 5: Rearranging the equation Rearranging gives: \[ b \cdot a^{b-1} \cdot b^a + a^b \cdot b^a \cdot \ln(b) + a^b \cdot b^a \cdot \ln(a) \cdot \frac{db}{da} = 0 \] ### Step 6: Solve for \( \frac{db}{da} \) Isolate \( \frac{db}{da} \): \[ a^b \cdot b^a \cdot \ln(a) \cdot \frac{db}{da} = -\left(b \cdot a^{b-1} \cdot b^a + a^b \cdot b^a \cdot \ln(b)\right) \] Thus, \[ \frac{db}{da} = -\frac{b \cdot a^{b-1} + a^b \cdot \ln(b)}{a^b \cdot \ln(a)} \] ### Step 7: Substitute \( a = 2 \) and \( b = 2 \) Now substitute \( a = 2 \) and \( b = 2 \): \[ \frac{db}{da} = -\frac{2 \cdot 2^{2-1} + 2^2 \cdot \ln(2)}{2^2 \cdot \ln(2)} \] Calculating the numerator: \[ = -\frac{2 \cdot 2 + 4 \cdot \ln(2)}{4 \cdot \ln(2)} = -\frac{4 + 4 \ln(2)}{4 \ln(2)} \] This simplifies to: \[ = -\frac{1 + \ln(2)}{\ln(2)} \] ### Step 8: Final answer At \( (2, 2) \), we find that: \[ \frac{db}{da} = -1 \] Thus, the value of \( \frac{db}{da} \) at \( (2, 2) \) is \( -1 \).
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If a=16, b=24 nad c=20, then the value of cos(B/2) is

If a = 16, b = 24 and c = 20, then the value of cos(B/2)=

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

If 9a^2+16b^2+c^2+25= 24(a+b) , then the value of (3a+4b+5c) is : यदि 9a^2+16b^2+c^2+25= 24(a+b) , है, तो (3a+4b+5c) का मान ज्ञात करें |

If a+b=10 and ab=16 then find the value of a^2+2b^2 and a^2+ab+b^2

If a=2^(b),b=prod_(c=2)^(15)log_(c)(c+1) ,then the value of log_(2)(log_(16) a) is :