Home
Class 12
MATHS
If y = (cot^(-1) x)^(2) then...

If y = `(cot^(-1) x)^(2) ` then

A

`(x^(2) +1)^(2) (d^(2) y)/(dx^(2)) +x (x^(2) +1) (dy)/(dx) -2 =0`

B

`(x^(2) +1)^(2) (d^(2)y)/(dx^(2)) - 2x (x^(2) +1) (dy)/(dx) +1 =0`

C

`(x^(2) +1)^(2) (d^(2)y)/(dx^(2)) + 2 x(x^(2) +1) (dy)/(dx) -2 =0`

D

`(x^(2)+1)^(2) (d^(2)y)/(dx^(2)) -x (x^(2)+1) +2 =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = (\cot^{-1} x)^2 \), we need to find the second derivative \( \frac{d^2y}{dx^2} \) and check which of the given options is satisfied by this expression. ### Step-by-Step Solution: 1. **Differentiate \( y \) with respect to \( x \)**: \[ y = (\cot^{-1} x)^2 \] Using the chain rule: \[ \frac{dy}{dx} = 2(\cot^{-1} x) \cdot \frac{d}{dx}(\cot^{-1} x) \] The derivative of \( \cot^{-1} x \) is: \[ \frac{d}{dx}(\cot^{-1} x) = -\frac{1}{1 + x^2} \] Therefore: \[ \frac{dy}{dx} = 2(\cot^{-1} x) \cdot \left(-\frac{1}{1 + x^2}\right) = -\frac{2 \cot^{-1} x}{1 + x^2} \] 2. **Square \( \frac{dy}{dx} \)**: \[ \left(\frac{dy}{dx}\right)^2 = \left(-\frac{2 \cot^{-1} x}{1 + x^2}\right)^2 = \frac{4 (\cot^{-1} x)^2}{(1 + x^2)^2} \] 3. **Multiply by \( (1 + x^2)^2 \)**: \[ (1 + x^2)^2 \cdot \left(\frac{dy}{dx}\right)^2 = 4 (\cot^{-1} x)^2 \] Substituting \( y \) for \( (\cot^{-1} x)^2 \): \[ (1 + x^2)^2 \cdot \left(\frac{dy}{dx}\right)^2 = 4y \] 4. **Differentiate the equation again**: Using the product rule on the left-hand side: \[ \frac{d}{dx}\left((1 + x^2)^2 \cdot \left(\frac{dy}{dx}\right)^2\right) = (1 + x^2)^2 \cdot \frac{d}{dx}\left(\left(\frac{dy}{dx}\right)^2\right) + \left(\frac{dy}{dx}\right)^2 \cdot \frac{d}{dx}\left((1 + x^2)^2\right) \] The derivative of \( (1 + x^2)^2 \) is: \[ 2(1 + x^2)(2x) = 4x(1 + x^2) \] The derivative of \( \left(\frac{dy}{dx}\right)^2 \) is: \[ 2\frac{dy}{dx}\frac{d^2y}{dx^2} \] So we have: \[ (1 + x^2)^2 \cdot 2\frac{dy}{dx}\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 \cdot 4x(1 + x^2) = 0 \] 5. **Rearranging the equation**: We can factor out \( 2\frac{dy}{dx} \) (assuming \( \frac{dy}{dx} \neq 0 \)): \[ (1 + x^2)^2 \cdot \frac{d^2y}{dx^2} + 2x(1 + x^2)\cdot \frac{dy}{dx} - 2 = 0 \] ### Final Form: Thus, we arrive at the equation: \[ (1 + x^2)^2 \cdot \frac{d^2y}{dx^2} + 2x(1 + x^2)\cdot \frac{dy}{dx} - 2 = 0 \] ### Conclusion: The correct option is **Option 3**.
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

If y=cot^(-1)(1+x^(2)-x), then (dy)/(dx)=

y=(cot^(-1)x)^(2), thenshowthat (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)

If y = cot^(-1) ((1 -x)/(1 +x)) " then " (dy)/(dx) = ?

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x + cot^(-1)y = tan^(-1)c, then: x+y=

Find the (dy)/(dx) of y=cot^(-1)(x^2)

If y= cot^(-1)(sqrt(1+x^2+1)/x) " then find " dy/dx

EDUCART PUBLICATION-SAMPLE PAPER 7-SECTION -B
  1. Which of the folowing should be the feasible region of the system of l...

    Text Solution

    |

  2. The function defined as f(x) = 2x^(3) -6x +3 is

    Text Solution

    |

  3. If the function f : { 1,2,3} rarr { 1,2,3} is one one then it must be ...

    Text Solution

    |

  4. The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

    Text Solution

    |

  5. If [(x),(y),(z)]=(1)/(17) [(1,5,1),(8,6,-9),(10,-1,-7)][(8),(1),(4)] t...

    Text Solution

    |

  6. If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =

    Text Solution

    |

  7. If the function y = m log x + nx^(2) +x has its critcal points at x = ...

    Text Solution

    |

  8. If y = (cot^(-1) x)^(2) then

    Text Solution

    |

  9. If the function f : A rarr B is defined as f(x) = (x-2)/(x-3) then t...

    Text Solution

    |

  10. If A = [ (2,2,-4),(-4,2,-4),(2,-1,5)] and B = [ (1,-1,0),(2,3,4),(0,1,...

    Text Solution

    |

  11. If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

    Text Solution

    |

  12. The equation of normal to the curve y = 3x^(2) - 4x +7 at x = 1 is :

    Text Solution

    |

  13. If the corner points of a feasible region of system of linear inequali...

    Text Solution

    |

  14. If the matrix P = [(7,a,4),(-1,3,b),(c, 6, 2)] is a symmetric matrix t...

    Text Solution

    |

  15. If the function f(x ) = {{:(10 , x lt=3),(ax+b,3lt xlt 7),(18,x gt=7):...

    Text Solution

    |

  16. If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  17. The function f(t) = 4 sin^(3) t -6 sin^(2) t +12 sin t + 100 is stric...

    Text Solution

    |

  18. The tangent to the curve y = e^(2x) at the point (0,1) meets x - axi...

    Text Solution

    |

  19. The value of expression tan [(1)/(2) cos^(-1) ""(2)/(sqrt(5)) ] is

    Text Solution

    |

  20. The cofactor of the element 0 in the determinant |(2,-3,5),(6,0,4),(1,...

    Text Solution

    |