Home
Class 12
MATHS
The function f(t) = 4 sin^(3) t -6 sin^(...

The function f(t) = 4 `sin^(3) t -6 sin^(2) ` t +12 sin t + 100 is strictly :

A

increasing in `(pi , (3pi)/(2))`

B

decreasing in `((pi)/(2) , pi)`

C

decreasing in ` [-(pi)/(2) , (pi)/(2)]`

D

decreaing in `[0, (pi)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(t) = 4 \sin^3 t - 6 \sin^2 t + 12 \sin t + 100 \) is strictly increasing or decreasing, we will follow these steps: ### Step 1: Differentiate the function To find the intervals where the function is increasing or decreasing, we first need to compute the derivative \( f'(t) \). \[ f(t) = 4 \sin^3 t - 6 \sin^2 t + 12 \sin t + 100 \] Using the chain rule and the power rule, we differentiate: \[ f'(t) = \frac{d}{dt}(4 \sin^3 t) - \frac{d}{dt}(6 \sin^2 t) + \frac{d}{dt}(12 \sin t) + \frac{d}{dt}(100) \] Calculating each term: 1. \( \frac{d}{dt}(4 \sin^3 t) = 4 \cdot 3 \sin^2 t \cdot \cos t = 12 \sin^2 t \cos t \) 2. \( \frac{d}{dt}(-6 \sin^2 t) = -6 \cdot 2 \sin t \cdot \cos t = -12 \sin t \cos t \) 3. \( \frac{d}{dt}(12 \sin t) = 12 \cos t \) 4. \( \frac{d}{dt}(100) = 0 \) Combining these results, we have: \[ f'(t) = 12 \sin^2 t \cos t - 12 \sin t \cos t + 12 \cos t \] ### Step 2: Factor out common terms We can factor out \( 12 \cos t \): \[ f'(t) = 12 \cos t (\sin^2 t - \sin t + 1) \] ### Step 3: Analyze the sign of \( f'(t) \) To determine where \( f(t) \) is increasing or decreasing, we need to analyze the sign of \( f'(t) \). 1. The term \( 12 \cos t \) will determine the sign based on the value of \( \cos t \). 2. The quadratic \( \sin^2 t - \sin t + 1 \) can be analyzed. The discriminant of this quadratic is: \[ D = (-1)^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 \] Since the discriminant is negative, the quadratic \( \sin^2 t - \sin t + 1 \) has no real roots and is always positive. Thus, \( f'(t) \) will have the same sign as \( \cos t \). ### Step 4: Determine intervals for \( \cos t \) - \( \cos t > 0 \) in the intervals \( (2n\pi, (2n+1)\pi) \) for \( n \in \mathbb{Z} \). - \( \cos t < 0 \) in the intervals \( ((2n+1)\pi, (2n+2)\pi) \). For the specific interval \( [0, 2\pi] \): - \( \cos t \) is positive in \( [0, \frac{\pi}{2}) \) and \( (\frac{3\pi}{2}, 2\pi] \). - \( \cos t \) is negative in \( (\frac{\pi}{2}, \frac{3\pi}{2}) \). ### Step 5: Conclusion Since \( f'(t) < 0 \) when \( \cos t < 0 \), the function \( f(t) \) is strictly decreasing in the interval: \[ \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \] ### Final Answer The function \( f(t) \) is strictly decreasing in the interval \( \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=4 sin^(3) x-6 sin^(2) x+12 sin x+100 is strictly.

The function f(x) =4sin^(3)x-6sin^(2)x +12 sinx + 100 is strictly

The function sin^(2)(omega t) represents:

x=2 cos^2 t, y= 6 sin ^2 t

The function sin 2 ( omega t) represents

The function f(x)=int_(0)^(x) log _(|sin t|)(sin t + (1)/(2)) dt , where x in (0,2pi) , then f(x) strictly increases in the interval

The equation of an FM signal is e = 6 sin (10^(6) t + 4 sin 10^(3) t ) . Then, the modulating frequency is

x = "sin" t, y = "cos" 2t

The distance, from the origin, of the normal to the curve, x = 2 cos t + 2t sin t, y = 2 sin t - 2t "cos t at t" = (pi)/(4) , is :

EDUCART PUBLICATION-SAMPLE PAPER 7-SECTION -B
  1. Which of the folowing should be the feasible region of the system of l...

    Text Solution

    |

  2. The function defined as f(x) = 2x^(3) -6x +3 is

    Text Solution

    |

  3. If the function f : { 1,2,3} rarr { 1,2,3} is one one then it must be ...

    Text Solution

    |

  4. The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

    Text Solution

    |

  5. If [(x),(y),(z)]=(1)/(17) [(1,5,1),(8,6,-9),(10,-1,-7)][(8),(1),(4)] t...

    Text Solution

    |

  6. If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =

    Text Solution

    |

  7. If the function y = m log x + nx^(2) +x has its critcal points at x = ...

    Text Solution

    |

  8. If y = (cot^(-1) x)^(2) then

    Text Solution

    |

  9. If the function f : A rarr B is defined as f(x) = (x-2)/(x-3) then t...

    Text Solution

    |

  10. If A = [ (2,2,-4),(-4,2,-4),(2,-1,5)] and B = [ (1,-1,0),(2,3,4),(0,1,...

    Text Solution

    |

  11. If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

    Text Solution

    |

  12. The equation of normal to the curve y = 3x^(2) - 4x +7 at x = 1 is :

    Text Solution

    |

  13. If the corner points of a feasible region of system of linear inequali...

    Text Solution

    |

  14. If the matrix P = [(7,a,4),(-1,3,b),(c, 6, 2)] is a symmetric matrix t...

    Text Solution

    |

  15. If the function f(x ) = {{:(10 , x lt=3),(ax+b,3lt xlt 7),(18,x gt=7):...

    Text Solution

    |

  16. If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  17. The function f(t) = 4 sin^(3) t -6 sin^(2) t +12 sin t + 100 is stric...

    Text Solution

    |

  18. The tangent to the curve y = e^(2x) at the point (0,1) meets x - axi...

    Text Solution

    |

  19. The value of expression tan [(1)/(2) cos^(-1) ""(2)/(sqrt(5)) ] is

    Text Solution

    |

  20. The cofactor of the element 0 in the determinant |(2,-3,5),(6,0,4),(1,...

    Text Solution

    |