Home
Class 12
MATHS
If A = [ (1,2,-3),(2,3,2),(3,-3,-4)] the...

If `A = [ (1,2,-3),(2,3,2),(3,-3,-4)]` then `A^(-1)` if it exists is :

A

`(1)/(67 ) [(-6, 14, -15), (17,5,9),(13,-8,-1)]`

B

`(1)/(67) [(6,-14,15),(-17,-5,-9),(-13,8,1)]`

C

`(1)/(67) [(-6,17,13),(14,5,-8),(-15,9,-1)]`

D

Does not exist

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

Let A ={1,2,3 } " and let " f: A to A defined by f ={(1,2),(2,3) , (3,1)} Find f^(-1) if it exists .

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If A = [[1, 1, 3], [1, 3, -3], [-2, -4, -4]] , then A^(-1) is

If A=|{:(2,lambda,-3),(0,2,5),(1,1,3):}| . Then A^(-1) exist if

If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]] , then |A^(-1)|=

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

Find AB, if A=[{:(1,2,3),(1,-2,3):}] and B=[{:(1,-1),(1,2),(1,-2):}] . Examine whether (AB)^(-1) exist or not.