Home
Class 12
MATHS
If tan^(-1)(-sqrt(3))+cot^(-1)x=pi, then...

If `tan^(-1)(-sqrt(3))+cot^(-1)x=pi`, then the value of x is :

A

0

B

`(1)/(sqrt(3))`

C

`sqrt(3)`

D

1

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise SECTION- B|18 Videos
  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise SECTION- C|4 Videos
  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-C|8 Videos
  • SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Mathematics (Section - A) |1 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(sqrt(3))+cot^(-1)x=pi/2 , find xdot

If tan^(-1)(sqrt(3))+cot^(-1)x=(pi)/(2), then find x

If cot^(-1) ( - (1)/(sqrt(3))) =x then the value of sin x is

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

If cot(sin^(-1)(sqrt((13)/(17))))=sin(tan^(-1)x) then value of x is