Home
Class 12
MATHS
The corner points of a feasible region d...

The corner points of a feasible region determined by a system of linear inequalities are (20,40),(50,100),(0,200) and (0,50). If the objective funtion `Z=x+2y`, then maximum of Z occurs at.

A

(20,40)

B

-50100

C

(0,200)

D

(0,50)

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise SECTION- C|4 Videos
  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise SECTION- C|4 Videos
  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-C|8 Videos
  • SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Mathematics (Section - A) |1 Videos

Similar Questions

Explore conceptually related problems

The corner points of a feasible region determined by a system of linear inequations are (0, 0), (4,0), (5,2), (2, 2) and (0, 1). If the objective function is Z = x + y, then maximum of Z occurs at:

The corneer points of a feasible region, determined by a system of linear inequations, are (0,0),(1,0),(4,3),(2,1) and (0,1). If the objective function is Z = 2x - 3y, then the minimum value of Z is :

The corner points of the feasible region determined by a system of linear inequations are (0,0),(4,0),(2,4) and (0,5). If the minimum value of Z=ax+by,a, bgt0 occurs at (2,4) and (0,5) ,then :

If the corner points of a feasible region of system of linear inequalities are (15,20) (40,15) and (2,72) and the objective function is Z = 6x + 3y then Z_(max) - Z_(min) =

The corner points of the feasible region of a system of linear inequalities are (0, 0), (4,0), (3,9), (1, 5) and (0, 3). If the maximum value of objective function, Z = ax + by occurs at points (3, 9) and (1, 5), then the relation between a and b is:

The corner points of the feasible region determined by the system of linear constraints are (0, 0), (0, 40). (20, 40), (60, 20). (60, 0). "The objective function is Z = 4x + 3y . Compare the quantity in Column A and Column B. {:("Column A", "Column B"),("Maximum of Z",325):}

The corner points of the feasible region determined by the system of linear contraints are (0,0), (0,40),( 20,40),(60,20),(60,0). The objective function is Z=4x+3y. Compare the quantity in Column A and Column B.

For an objective function Z = ax + by," where "a,b gt 0, the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:

For an objective function Z = ax + by, where a, bgt0 , the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20). (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum z occurs at both the points (30, 30) and (0, 40) is:

The corner points of the feasible region of a system of linear inequations are (0, 0), (5, 0), (6,5), (6, 8), (4, 10) and (0,8). If Z = 3x - 4y, then the minimum value of Z occurs at:

EDUCART PUBLICATION-SAMPLE PAPER 11 -SECTION- B
  1. If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)), then x is

    Text Solution

    |

  2. If A=[(1,-1),(-1,1)] and A^(2)=lamdaA, then the value of lamda is :

    Text Solution

    |

  3. If A=[(1,2),(3,-1)]" and B "=[(1,3),(-1,1)], then matrix AB is a :

    Text Solution

    |

  4. If y=sin t -cos t and x=sin t+cost, then (dy)/(dx) at t=(pi)/(6) is :

    Text Solution

    |

  5. The interval in which the function f(x)=2x^(3)-9x^(2)+12x-15 is increa...

    Text Solution

    |

  6. The equation of tangent to the curve 16x^(2)+9y^(2)=145 at the (2,y(1)...

    Text Solution

    |

  7. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  8. If the system of linear equations x-y=0,2x+3y+4z=17 and y+2z=7 are wr...

    Text Solution

    |

  9. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  10. The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

    Text Solution

    |

  11. Let the relation R is a set of real numbers be defined as R={(x,y),y=3...

    Text Solution

    |

  12. Tangents to the curve y=x^(3)+3x at x=1 and x=-1 are :

    Text Solution

    |

  13. If y=sqrt(x)+(1)/(sqrt(x)), then (dy)/(dx)=

    Text Solution

    |

  14. The adjoint of matrix [(3,2),(-1,4)] is :

    Text Solution

    |

  15. The corner points of a feasible region determined by a system of linea...

    Text Solution

    |

  16. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  17. The derivation of sqrt((1-cosx)/(1+cosx)) w.r.t. x is

    Text Solution

    |

  18. Determine the intervals in which the following functions are strictly ...

    Text Solution

    |