Home
Class 9
MATHS
The value of (4 m^2 - a^2 + 2ab - b^2)/(...

The value of `(4 m^2 - a^2 + 2ab - b^2)/(2m +a - b)` is

A

`(2m - a + b)`

B

`(2m - a -b)`

C

`(2 m +a + b)`

D

`(2m + a - b)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( m^4 - m^2n^2) ÷ m^2 is

If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -ab sqrt(2) +b^(2)) is

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)