Home
Class 9
MATHS
The value of (4m^2 - a^2 + 2ab - b^2)/(2...

The value of `(4m^2 - a^2 + 2ab - b^2)/(2m + a - b)` is

A

`(2m - a + b)`

B

`(2m - a- b)`

C

`(2m + a + b)`

D

`(2m + a -b)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( m^4 - m^2n^2) ÷ m^2 is

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -ab sqrt(2) +b^(2)) is

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)