Home
Class 14
MATHS
What approximate value will come in plac...

What approximate value will come in place of the questions mark(?) in the following questions? (You are not expected to calculate the exact value)
`(24.95/9.88)^2xx1010/624+51/499=?`

A

10.1

B

15.1

C

5.3

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \left( \frac{24.95}{9.88} \right)^2 \times \frac{1010}{624} + \frac{51}{499} = ? \), we will approximate the values to make the calculations easier. ### Step-by-Step Solution: 1. **Approximate the Values**: - Approximate \( 24.95 \) to \( 25 \). - Approximate \( 9.88 \) to \( 10 \). - Approximate \( 1010 \) to \( 1000 \). - Approximate \( 624 \) to \( 625 \). - Approximate \( 51 \) to \( 50 \). - Approximate \( 499 \) to \( 500 \). So, the expression becomes: \[ \left( \frac{25}{10} \right)^2 \times \frac{1000}{625} + \frac{50}{500} \] 2. **Simplify the Fractions**: - Calculate \( \frac{25}{10} = 2.5 \). - Therefore, \( \left( \frac{25}{10} \right)^2 = (2.5)^2 = 6.25 \). - Now, calculate \( \frac{1000}{625} \): \[ \frac{1000}{625} = \frac{1000 \div 125}{625 \div 125} = \frac{8}{5} = 1.6 \] 3. **Multiply the Results**: - Now, multiply \( 6.25 \) by \( 1.6 \): \[ 6.25 \times 1.6 = 10 \] 4. **Calculate the Second Fraction**: - Now, calculate \( \frac{50}{500} \): \[ \frac{50}{500} = \frac{1}{10} = 0.1 \] 5. **Add the Results**: - Finally, add \( 10 \) and \( 0.1 \): \[ 10 + 0.1 = 10.1 \] Thus, the approximate value that comes in place of the question mark is \( \boxed{10.1} \).
Promotional Banner